If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+5p=84=0
We move all terms to the left:
p^2+5p-(84)=0
a = 1; b = 5; c = -84;
Δ = b2-4ac
Δ = 52-4·1·(-84)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*1}=\frac{-24}{2} =-12 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*1}=\frac{14}{2} =7 $
| 77=7(m+3.7) | | -33/1=1/2g | | 2÷3y-1÷6y+4=19 | | 4w=6w+11 | | 12(2.5)=2x2-3x+7 | | 12(2.5)=2x2−3x+7 | | (3x+8)=(7x+4) | | -2-(3+x)=5 | | 3y-1=2y | | 2x^2+(4x-6x^2)+9-(6x+3)=-4x^2-2x+12 | | 2x^2+(4x-6x^2)+9-(6x+3)=-4x^2-2x+6 | | 2x^2+(4x-6x^2)+9-(6x+3)=-4x^2-2x+ | | 2576=23(p+35) | | 2x^2+(4x-6x^2)+9-(6x+3)=-4x^2-2x-6 | | (3x+29)+(6x+7)=180 | | 12c^2-36c=0 | | 2576=23(p+23) | | 4a+12a=0 | | 15-10y=4y-16 | | -5(1-w)=10 | | 7m-12=30 | | 2-4n=7n+3. | | 3x+11x/3=100 | | 6+4m=-10 | | 4x2−4x−3=0 | | 0.5y-y=-9 | | 1/3a+1/2=10 | | 15/x+2=5 | | 4(x+3)-10=10 | | n^+6n+5=8 | | F(2.5)=2x2-3x+7 | | 46.2=46.2p |